Home | Develop | Download | Contact
example_perceptron_predict.cpp

Programa para el testeo de las funciones.Para compilar o código example_perceptron_predict.cpp:

g++ -static -o example_perceptron_predict example_perceptron_predict.cpp -lpdsmlmm -lpdsramm -lpdsspmm

Para executar o programa:

./example_perceptron_predict

Retornando por consola:

Elapsed time: 1.862 ms

Neurona:
-0.055853392180644      4.545875006622  4.5637016611478

Training:
╔═══════════════════════════════════╗
║    ClassificationMetrics data     ║
╠═══════════════════════════════════╣
║        Threshold: 0.5             ║
║          Samples: 2400            ║
╠═══════════════════════════════════╣
║ Pred.[0]/Act.[*]: 1229    12      ║
║ Pred.[1]/Act.[*]: 0       1159    ║
╠═══════════════════════════════════╣
║         Accuracy: 99.5  %         ║
║        Precision: 100   %         ║
║           Recall: 98.98 %         ║
╠═══════════════════════════════════╣
║           FScore: 99.48 %         ║
╚═══════════════════════════════════╝

Cross-validation:
╔═══════════════════════════════════╗
║    ClassificationMetrics data     ║
╠═══════════════════════════════════╣
║        Threshold: 0.49            ║
║          Samples: 800             ║
╠═══════════════════════════════════╣
║ Pred.[0]/Act.[*]: 389     0       ║
║ Pred.[1]/Act.[*]: 0       411     ║
╠═══════════════════════════════════╣
║         Accuracy: 100   %         ║
║        Precision: 100   %         ║
║           Recall: 100   %         ║
╠═══════════════════════════════════╣
║           FScore: 100   %         ║
╚═══════════════════════════════════╝
Elapsed time: 20.41 ms

Testing:
╔═══════════════════════════════════╗
║    ClassificationMetrics data     ║
╠═══════════════════════════════════╣
║        Threshold: 0.49            ║
║          Samples: 800             ║
╠═══════════════════════════════════╣
║ Pred.[0]/Act.[*]: 382     0       ║
║ Pred.[1]/Act.[*]: 0       418     ║
╠═══════════════════════════════════╣
║         Accuracy: 100   %         ║
║        Precision: 100   %         ║
║           Recall: 100   %         ║
╠═══════════════════════════════════╣
║           FScore: 100   %         ║
╚═══════════════════════════════════╝
Classification - training


Classification - testing

Código example_perceptron_predict.cpp:

#include <iostream>
#include <Pds/Ra>
#include <Pds/Ml>
int main(void)
{
Pds::IterationConf Conf; Conf.SetMaxIter(1000); Conf.Show=true;
Pds::Vector Yp;
// Generating data
unsigned int L=2000;
Pds::Matrix X;
Pds::Vector Y;
// Split data set in {Training,Cross-validation,Test}
// Create Perceptron
Pds::Ra::Tic();
Pds::Perceptron Neurona(Conf,Dat.Xtr,Dat.Ytr);
Pds::Ra::Toc();
Pds::Vector W=Neurona.GetW();
Neurona.Print("\nNeurona:\n");
// Predict training
Yp=Neurona.Predict(Dat.Xtr);
Metrics.Print("\nTraining:\n");
Pds::Octave::XLabel="x_1";
Pds::Octave::YLabel="x_2";
Pds::Octave::Plot::PointsX2DYW(Dat.Xtr,Dat.Ytr,W,"testando.m","example_perceptron_predict_training.png");
// Predict cross-validation
Yp=Neurona.Predict(Dat.Xcv);
Pds::Ra::Tic();
Metrics.Print("\nCross-validation:\n");
Pds::Ra::Toc();
// Predict testing data
Yp=Neurona.Predict(Dat.Xtt);
Metrics.Print("\nTesting:\n");
Pds::Octave::Plot::PointsX2DYW(Dat.Xtt,Dat.Ytt,W,"testando.m","example_perceptron_predict_testing.png");
return 0;
}
La clase tipo Pds::ClassificationMetrics . Esta clase genera un bloque de datos para analizar curvas ...
La clase tipo Pds::DataSetBlock . Esta clase genera un bloque de datos para analizar curvas de aprend...
La clase tipo Pds::IterationConf . Esta clase genera una matriz de Nlin lineas y 1 columna....
La clase tipo Pds::Perceptron . Esta clase genera una matriz de Nlin lineas y 1 columna....
Definition: Perceptron.hpp:64
static Pds::ClassificationMetrics Calculate(double Threshold, const Pds::Vector &Ypredict, const Pds::Vector &Yactual)
Crea un objeto Dat de tipo Pds::ClassificationMetrics.
static Pds::ClassificationMetrics Optimal(const Pds::Vector &Ypredict, const Pds::Vector &Yactual)
Crea un objeto Dat de tipo Pds::ClassificationMetrics.
void Print(std::string str="")
Imprime en pantalla los datos de la estructura tipo Pds::ClassificationMetrics.
bool SetMaxIter(unsigned int MaxIter)
Coloca el valor MaxIter.
Pds::DataSetBlock Split(const Pds::Matrix &X, const Pds::Vector &Y, double Training, double CrossVal, double Test)
Divide un data set en 3 data set: {Training, CrossValidation, Test}, selecionados aleatoriamente sin ...
void LoadDataLine(unsigned int L, Pds::Matrix &X, Pds::Vector &Y)
Clasificacion de datos separados por una linea.
double Predict(const std::initializer_list< double > list) const
Evalua el objeto de tipo Pds::Perceptron.
const Pds::Vector & GetW(void) const
Retorna el vector de pesos.
void Print(std::string str="") const
Imprime en pantalla el contenido del vector de pesos después del texto indicado en str.

Enlaces de interés

HomePage Bazaar Download Bug report Ayuda Developer Feed