29 Pds::Octave::XLabel=
"x1";
30 Pds::Octave::YLabel=
"x2";
31 Pds::Octave::DAspect=
true;
42 Pds::Octave::MarkerSize=4;
43 Pds::Octave::Plot::PointsX2D(X,
"testando.m",
"example_funcpwc_probability_data.png");
46 Pds::Matrix Sinv=X.CovMatrix().Inv();
51 Pds::Octave::MarkerSize=12;
52 Pds::Octave::Plot::ScatterX2DY(X,P,
"testando.m",
"example_funcpwc_probability_prob.png");
57 Pds::Octave::MarkerSize=12;
58 Pds::Octave::Plot::ScatterX2DY(X,P,
"testando.m",
"example_funcpwc_probability_prob2.png");
La clase tipo Pds::IterationConf . Esta clase genera una matriz de Nlin lineas y 1 columna....
bool SetMinError(double MinError)
Coloca el valor MinError.
void LoadKGaussian(unsigned int L, unsigned int K, Pds::Matrix &X, Pds::Vector &Y, double factor=0.70711)
Clasificación múltiple de datos.
Pds::Vector PWCDensity(const Pds::Matrix &X, const Pds::Matrix &C, const Pds::Matrix &Sinv, double h=0.1)
Retorna un vector . Con este fin, evalua la "Parzen Window Classifier probability density function" .