10 Pds::Matrix X(Pds::Ra::TextFormat,
"../test/data_x_yinyang.txt");
11 Pds::Matrix Y(Pds::Ra::TextFormat,
"../test/data_y_yinyang.txt");
12 Pds::Matrix Ys(Y.Size());
14 std::vector<unsigned int> N={2,512,64,8,1};
22 for(
unsigned int k=0;k<M;k++)
28 Acc.Set(k,100.0*Pds::Accuracy(Ys.Geq(0.5),Y));
29 std::cout<<
"Test["<<k<<
"]\t";
30 std::cout<<
"Accuracy %: "<<Acc.At(k)<<std::endl;
32 T=Ys.Geq(0.5).NotEqualTo(Y);
38 pds_octave_plot_points(Pds::LinSpace(0,M-1,M),Acc,
"Iter",
"Accuracy",
"testando.m",
"test_fcnn_training2_Acc.png");
39 pds_octave_plot_vector(X,Y ,
"x_1",
"x_2",
"testando.m",
"test_fcnn_training2_Y.png");
40 pds_octave_plot_vector(X,Ys,
"x_1",
"x_2",
"testando.m",
"test_fcnn_training2_Ys.png");
42 NN0.
Save(
"../test/NeuralNettwork1.txt");
La clase tipo Pds::FCNn . Esta clase genera un objeto con dos parametros Nlin y Ncol....
bool Training(const Pds::Matrix &X, const Pds::Matrix &Y, double alpha, double lambda)
Treina la NN como um bloque de datos entero X para encontrar una variacion de pesos.
Pds::Vector Evaluate(const Pds::Vector &In)
Evalua la capa de la CNN.
bool Save(std::string filename)
Salva los datos en un archivo binario.